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Abstract

This paper presents a case study demonstrating how an AI agent powered by a
large language model can autonomously generate deepfake audio, highlighting
the potential risks of advanced AI systems. The study emphasizes the need for
comprehensive benchmarks and evaluation methods for agentic AI systems to
ensure their safe and responsible development and deployment.

1 Introduction

The rapid advancement of generative AI and large language models (LLMs) has opened up transfor-
mative opportunities for numerous sectors, offering unprecedented capabilities in natural language
understanding, content generation, and problem-solving. However, these technologies also present
significant challenges. Issues such as bias, racism, and alignment with human values remain pressing
concerns, as the social impact of generative AI continues to raise ethical and societal questions Galle-
gos et al. [2024]. To address these challenges, researchers have developed specialized datasets and
benchmarks, such as those measuring bias and racism Gupta et al. [2024], Lee et al. [2023], Shin et al.
[2024], alongside techniques for aligning AI models with human values, including approaches like
Reinforcement Learning From Human Feedback (RLHF) Ouyang et al. [2022] and Reinforcement
Learning From AI Feedback (RLAIF) Lee et al. [2024]. Efforts to mitigate these risks also include
adding guardrails to LLMs to ensure safer and more responsible deployment Yuan et al. [2024],
Ayyamperumal and Ge [2024].

More recently, attention has turned toward augmenting LLMs with tools to enhance their problem-
solving abilities, giving rise to LLM-based agents Wang et al. [2024], Xi et al. [2023]. These agents
can autonomously perform a broader range of tasks, such as executing complex procedures Schick
et al. [2023], navigating software tools Yang et al. [2024a], or even composing detailed reports and
designing complex data visualizations Yang et al. [2024b]. While this expansion of LLM capabilities
is promising, it also introduces new risks. With their increased autonomy, LLM agents can be
exploited for harmful purposes, such as the creation of deepfakes or other malicious content. The
increased power of autonomous systems comes with a corresponding responsibility to ensure their
safe and ethical use.

In this paper, we present a case study demonstrating how an AI agent powered by an LLM can au-
tonomously generate a deepfake audio clip using simple scaffolding programs. This case exemplifies
the potential dangers inherent in such capabilities, highlighting how easily autonomous systems can
be misused to create deceptive or harmful content. Through this example, we aim to raise the critical
questions: How can we protect against the misuse of these powerful AI systems? What safeguards
and regulatory frameworks are needed to ensure their responsible use? Furthermore, how do we
address the broader societal impacts that accompany the deployment of such technologies?
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Figure 1: Left: Illustration of the agentic setup Kinniment et al. [2024]. Right: Performance
comparison of GPT-4o and GPT-4o-mini on tasks of varying difficulty. *GPT-4o succeeded on the
hard task only when given a hint.

2 Method

Our agentic evaluations are designed to assess the capabilities of LLMs in performing tasks in a
computer terminal, following setups similar to METR and Google DeepMind’s evaluations Kinniment
et al. [2024], Phuong et al. [2024]. We prepare a Docker container with textual instructions and
resources for the tasks met, enabling any system that can operate a keyboard to complete them.

To evaluate agentic capabilities, we deploy LLMs as agents within this environment. Specifically,
we use GPT-4o and GPT-4o-mini in a modular agent framework mod, where the agent operates
in an iterative loop. It generates natural language commands, which are parsed and executed by a
scaffolding program. The agent has access to basic tools—python and bash—and can build additional
tools if needed.

For this study, the agent is tasked with generating audio deepfakes, creating an audio file of a target
voice saying a target phrase based on a 15-minute sample. We define four variations of this task: (1)
Easy: the output audio can be of any voice, (2) Medium: the target phrase appears in the provided
sample, (3) Hard: the target voice is available online via a pre-trained model, and (4) Extra hard: the
target voice is not available online.

3 Results & Discussion

As illustrated in Figure 1, the GPT-4o-mini agent demonstrated the capability to generate deepfakes
only in the least complex variation of this task. In contrast, a more advanced language model,
GPT-4o, exhibited more concerning proficiencies. It successfully manipulated an audio file to create
an out-of-context statement (Medium difficulty) and even managed to download a text-to-speech
model of a specific individual from the internet to produce a high-quality deepfake. To accomplish
the latter, the model required a hint indicating the identity of the target voice. Consequently, it did
not demonstrate the ability to compare multiple text-to-speech models with the target voice, which
would be necessary for the complete task. Moreover, the model was unable to complete the Extra
Hard variant, which required the creation of a deepfake for a voice not available on the internet. It
is important to note that these results are specific to our experimental setup, which was designed
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to be as generalizable as possible to allow model intelligence to dictate task performance. A more
specialized setup might yield different outcomes.

The intentional design of task variants with varying difficulty levels allows for a comprehensive
assessment of model capabilities. While the observed results are concerning, we do not think they
warrant a pause of development according to the Responsible Scaling Policies (RSPs) outlined by
any of the AI labs ant [2023], ope [2023], dee [2024]. However, the significant improvement in
capabilities from GPT-4o-mini to GPT-4o suggests that future models may achieve even higher levels
of proficiency. Therefore, it is crucial to develop future-proof evaluation methods that enable model
developers to assess the full potential societal impact of their creations before release.

In conclusion, this study highlights the potential risks of autonomous AI agents capable of generating
deepfakes. By demonstrating how a very general LLM agent autonomously can generate a deepfake
audio clip, we emphasize the need for more comprehensive and robust benchmarks and evaluation
methods for agentic systems. These improved assessment tools will be essential in ensuring that the
development and deployment of agentic AI systems align with ethical standards and societal values,
while also providing a more accurate measure of their potential impact on social and technological
landscapes.
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